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SUMMERY

The validity of applying chi-square basad confidence intervals to farfield
acoustic flyover spectral estimates was investigated. Simulated data using a Kendall
series and experimental acoustic data from the NASA/McDonnell Douglas 500E
acoustics test were analyzed. Statistical sign ficance tests to determine the equality of
distributions of the simulated and experiment.l data relative to theoretical chi-square
distributions were performed. Bias and uncertainty errors associated with the spectral
estimates were easily identified from the data sets. A model relating the uncertainty
and bias errors to the estimates resulted, whizh aided in determining the
appropriateness of the chi-square distributior based confidence intervals. Such
confidence intervals were appropriate for the non-tonally associated frequencies of the
experimental data but were inappropriate for the tonally associated estimate
distributions. The inappropriateness at the tcnally associated frequencies was
indicated by the presence of bias error and non-conformity of the distributions to the
theoretical chi-square distribution. A techniqgue for determining appropriate

confidence intervals at the tonally associated frequencies was suggested.
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SYMBOLS AND ABBREVIATIONS

digitization sample time interval

type 1 error, the accepted error rate of rejecting a true null
hypothesis

real components from DFT

one-sided amplitude spectra

one-sided power spectra via amplitude spectra
imaginary components from DFT

frequency dependent bias error
Kolmorogov-Smirnov test statistic

degrees of freedom

uncertainty error

transfer function for filter

frequency, radians/second

probability of truth of a relationship

parametric variance

parametric power spectral density

estimate of power spectral density

mean of ensemble of §x(m)

sample standard deviation of Y

critical value of Student's t-distribution

parametric mean

window correction factor

chi-square

digitized time series data

discrete Fourier transform



INTRODUCTION

By including confidence interval or var:ance determinations with any reported
experimental measurement data, a researcher more clearly describes his quantitative
results. By doing so, the researcher attempts to convey the level of precision and
accuracy that reflects the quality of the data. 'n aeroacoustic spectral data Rao and
Preisser! have shown that asymptotic technicues for estimating the variance of power
spectral density estimates work quite well. For acoustic spectral data, determined by
digital techniques, a chi-square (x2) distribution based confidence interval formula is
sometimes applied to determine confidence intervals for experimental data. The

formula theoretically models the variation of t1e individual or averaged spectral

estimates (§x(w) or Sx(w) respectively) about their parametric values Sx(w) at the
frequency w. Specifically the confidence inte vals are determined as shown by Otnes

and Enochson?2 as

where p, the probability of truth of the relation is selected by the researcher,x=1-p,
ng; w2 ,and ng; 1-o/2 ,represent the abscissas of the x2 probability density
function with probability areas of /2 and 1 - (/2 respectively. The number of degrees
of freedom, df, is equal to twice the number of individual estimates §x(w) which were
averaged to obtain the mean Sy(w) . As such, this formula establishes a probabilistic
relationship between the averaged spectral € stimates and the parametric values

which they estimate.



It should be recalled from statistical sample theory3 that experimental
measurements are performed to estimate parametric values that are not exactly
determined (unless the sample universe is exhaustively sampled). The best that can
be achieved is to estimate these parametric values in a probabilistic sense. As an
example, confidence intervals serve to probabilistically relate the sample data
estimates to the parametric values.

A major assumption of the x2 distribution based confidence intervals for
spectral estimates is that the time series input data are Gaussian distributed. When
this is true, Otnes and Enochson2 have shown that the real and imaginary
components associated with the Fourier transforms of the time series data are

independent Gaussian random variables and as such squaring and adding them
creates a x2 variable. By example, for the Gaussian distributed real components, ay,

aE is a x2 random variable with 1 associated degree of freedom. When added to the
similarly distributed squared imaginary components bE , this yields a new 2
distribution with two associated degrees of freedom. This relationship is known as the
additive property of the x2 distribution.

The purpose of this work was to assess the appropriateness of using the x2
distribution based confidence interval formula for complex helicopter flyover data. This
can be achieved by determining statistically if the individual spectral estimates which
are averaged to determine Sy(w) are indeed x2 distributed. The experimental
acoustic data is from a recent NASA/McDonnell Douglas Helicopter Company
(MDHC) farfield acoustics test using the MDHC supplied model S00E helicopter.
Since the acoustic data for these analyses was collected and processed using
ensemble averaging techniques4, the results are pertinent to this experimental design

and analysis scheme.



COMPUTATIONAL METHODS
Power Spectra from Amplitude Analysis

Before the fast Fourier transform algori-hms for computing the discrete Fourier
transform (DFT) were commonly used on digi:al computers, banks of analog bandpass
filters were used to measure the frequency content of acoustics signals. For continuity
with this earlier work, power spectra (PS) are now determined from amplitude spectra
using digital techniques for most far-field acotistic measurements.

Two major assumptions of this spectra analysis technique are (a) that the time
series data are stationary, and (b) that the length of the time series data analyzed
contains an integer multiple of periods. The experimental flyover acoustic data is non-
stationary. This is largely due to the modulation of the acoustic sources by spherical
spreading. The ensemble averaging experim ental design and analysis scheme? is
used with the intent to make the data more locally stationary. This is achieved by
averaging spectra which are determined from sequential short segments of the time
series. Because helicopter acoustic time series data have signals of different periods
within the data, the assumption of analyzing i 1teger multiples of periods of data is
difficult. This assumption is not adhered to and the ramifications (spectral leakage)
have been discussed by Burgess.® For calctlating PS, continuous time histories x(t)

of length NAt are discretized every At second; so that
Xj = x(jAt) for, =0, N- 1.

The Fourier series resulting from the DFT in rzlation to Xj can be expressed as

M 27k _2nkj
z ay cos - =+ bk sin — 2)



forj=0,N-1and N =M, where the Fourier coefficients are defined as

N-1 21k
-2 X; J
ay =& j=zo j cos —= 3)
and
N-1 2nk
_2 - J
bk N j=zo Xj sin N (4)
fork =0, M.

The one-sided spectra at the independent Fourier frequencies is
Xk =2V aE + bE , S0 that the power spectra via amplitude spectra is equal to KE .
These quantities are interpreted as the finite power or the mean square of the acoustic
time series pressure data as a function of the specific Fourier frequencies.

When M, the number of Fourier coefficients, is chosen to be less than the
number of discrete points in the time series, the transform is approximate. For the DFT,
where by definition N = M, the relationship between the Xj and the transform is exact.
The frequency domain presentation of the time domain data is exact if the data were

filtered to exclude all frequencies above the nyquist frequency.
Power Spectral Density

Another spectral analysis technique used in acoustics and other engineering
disciplines is the power spectral density (PSD). Again the assumption of stationarity of
the time series data is required by this analysis technique. It may be defined, as

shown by Hardin® for a signal X(t) whose total duration is bAt from discrete data X(nAt)

forn=0,b-1as



Sx() = Wg | Xp(@)l2 (5)
where
b-1 .
Xp(w) =4l ) d(nat) X nAt)e-ionAt, (6)
2n n=0

The data window d(nAt) used in this analysis is the rectangular (boxcar)
window, resulting in the window correction fa:tor Wg being unity. The appropriate
interpretation of the PSD is as the power (or :nean square pressure) per unit
frequency.

As both spectral estimate techniques (>S and PSD) involve using the DFT, an
exact transform, the variability observed from the spectral estimates is largely a
function of the variability of the data itself. Figures 1A to 1E present frequency domain
data using the PS method from one of the N/ SA/MDHC 500E flyovers. Because the
range of the mean square pressures is so larje a series of graphs is used to show the
data distributions of interest. The ensemble averaging experimental design technique
employed allows for thirty ensembles at eact selected directivity angle pair,
consequently there are thirty two-degree-of-fieedom spectral estimates at each
frequency analyzed. As the acoustic analysi:; procedures require entire spectra to be
presented, which involves averaging of the n-ean square acoustic pressures within
frequencies and then converting to the dB scile, an understanding of the intra-
frequency variability is not generally presented. The standard acoustic analysis
generates a single estimate with sixty associiited degrees of freedom. Because
distributions of estimates are used in the fortt coming analyses, thirty estimates with
two associated degrees of freedom are used at each Fourier frequency. Such a
presentation is fundamental to understanding the sample variability and defining the
distributions of the frequency dependent me:.n square acoustic pressures which will

direct the appropriate confidence interval an:iysis.



Ideal Measurement Data - Kendall Series

As the parametric functions of far-field acoustic data are not known during
flyover situations and the data's character changes as a function of time, it is
necessary to have a more well behaved time series for example cases. A test data set

using the Kendall series can serve this purpose6. The stationary Kendall series Y, for

N points is determined using the relationship
Yn=a1Yn.1+32Yn.2 + Xp 7)

forn = 0, N. Selected initial conditions for Y_1 and Y,.2 are set at 0.0 withaq = 1.0
andaz = -0.5 yielding a stable second order recursive filter with characteristics of a
lowpass and bandpass hybrid filter. The input series Xp, is a uniform distribution with
mean of 0.0 and variance (0§) of 0.3. To associate the output series with time, each

successive Yy, was assigned a At of 1 second. Hardin® showed the PSD for such a

series could be analytically defined as

Sy = Af—t—r L] B L L _q g
T{1-Sqyeid 1-5qe0 2n {1-So el 1-Syel®
where
2
- ox S1
A= e 9)
(S1-82)(1-S1S2){1 - Sj
B -o% So
(S1 - Sp)(1 - S1Sp)1 - S3) (10)

and



S =aqt .
1.2= 2 (11)

The theoretical Sy(w) can be considered to be the parametric function that all

estimates of the series approximate.
Kolmorogov-Smirnov One Sample Test

The Kolmorogov-Smirnov test statistic’ D can be used to perform a significance
test which will facilitate accepting or rejecting the hypothesis of equality of a theoretical
distribution and a measured sample distribution. Sokal and Rohlf/ have
demonstrated that this nonparametric goodne ss of fit test works well for small sample
sizes. Specifically, D is determined as the la:gest of the values d¥ ordj where
df =|Fi - f?il and dj =’Fi q- Ei' X IA:i is the i-th standardized cumulative expected
frequency of the theoretical distribution, and j is the i-th standardized cumulative
observed frequency from the measured sample distribution. The standardization used
for both distributions is to divide each elemert of the distribution by the distribution’s
mean and then to multiply the elements by thz expected degree of freedom. The
statistical significance of the D statistic is determined using tables of critical values of
the Kolmorogov-Smirnov one sample test8. Alpha levels of 0.05 were used for all
significance tests, therefore the accepted errar rate of rejecting a true null hypothesis is

five percent.
APPLICATIONS USING KENDALL SERIES TEST DATA

Some of the computational methods jt st described were used to analyze the
Kendall series test data. A particular advant:.ge of the Kendall series is that long time
series of random test data can be generated. This allows for spectral estimates of high

numbers of degrees of freedom to be determ ned. Figure 2-E displays the PSD of a



10

single estimate having 200,000 degrees of freedom in relation to its parametric
function, the Kendall series theoretical PSD. This estimate is observed to closely
follow its parametric function. One hundred thousand time series blocks of the Kendall
series were analyzed to produce this estimate.

The series of graphs in Figure 2 serve to illustrate the two types of errors that
occur in spectral estimates. These include uncertainty error and bias error.

Uncertainty error, which is characterized by the scatter of the estimates about
their expected values, is observed to vary as a function of the number of degrees of
freedom associated with the estimate. The uncertainty error decreases as the number
of degrees of freedom increases and is random.

The two degree of freedom case (Fig. 2A), a single unaveraged estimate, is
observed to not closely resemble the parametric spectra it estimates. Generally, as the
number of degrees of freedom increases, the correlation between the estimate and the
parametric values increases (Fig. 2B to 2E).

Bias error, which is systematic, can be seen most clearly in Figure 2E. For this
200000 degree of freedom estimate virtually all uncertainty error has been eliminated
through the spectral averaging process. The difference between the estimate and the
parametric function is the systematic bias error introduced into the estimate by the
PSD analysis. Hardin® has shown bias error to be proportional to the second
derivative of the PSD parametric function. All of the estimates of Figure 2 (A to E) have
a similar bias error but because of its magnitude relative to the uncertainty error it is
only obvious for the 200000 degree of freedom case.

The bias error is proportionally largest at maxima and minima of the second
derivative of this function. The bias error's behavior can be most easily explained as
mimicking the output of a lowpass smoothing filter operating on the parametric PSD
function. For the estimates, the peaks are not as high and the troughs are not as low

as they would be if the spectral estimation techniques were unbiased estimators.
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Within a single spectrum there may exist pos tive, negative, and zero bias depending

on the shape of the parametric function.
Confidence Intervals

For the confidence intervals about spe:tral estimates to be appropriate, they
should account for the errors associated with the estimate. Consequently, the
confidence interval formula should include a ‘unction that models the distribution of
spectral estimate uncertainty and bias. To te:t the hypothesis that this confidence
interval function should be based on the x2 family of distributions for spectral estimate
variability, 10000 estimates each from a rang2 of numbers of degrees of freedom were
generated. Figures 3A to 3E display these results. For all of these estimates, the
parametric function is the same theoretical P3D as displayed in the Figure 2 series.
These results show how the estimate variabil ty changes as a function of the number of
degrees of freedom associated with each of the 10000 estimates which make up these
data. Figure 4A displays the distribution of e stimates from a similar analysis as above
but only presenting the PSD at a single frequancy (0.113 Hz). The shapes of the
distributions are observed to qualitatively agree with the standard 2 distribution.
Generally this involves the transition from an L-shaped asymmetric distribution to a
symmetric normal distribution when the numher of degrees of freedom range from low
to high. The cumulative probability distributic ns of these data were compared to
theoretical %2 distributions with the approprizte number of degrees of freedom (Fig. 4B
to 4F). There are two cumulative probability ‘unctions on each of the graphs (Fig. 4B to
4F) but because they are so similar they ove‘lap each other and cannot be separately
distinguished. The Kolmorogov-Smirnov tes: statistics (Table 1) were determined to
test the hypothesis of equality of the associa‘ed cumulative frequency distributions.
The significance of the test statistics was det2rmined by comparing them to the critical

value of the Kolmorogov-Smirnov one-samp'e statistic with the appropriate sample
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size and alpha level. The insignificant (o« = 0.05) D statistics indicate that there is
insufficient evidence to reject the hypothesis of equality, so the distributions of the

Kendall series data and the theoretical x2 data are equal.
Interpretation of Confidence Intervals

As the PSD spectral estimates for the Kendall Series were shown to be %2
distributed then equation (1) for confidence intervals seems initially appropriate for
these data. To illustrate this, eighty percent confidence intervals were selected. The
correct interpretation of a confidence interval from equation 1 when p = 0.8 is that the
probability is 0.8 that the parametric value will lie within this confidence interval. An
alternate interpretation is that if a large number of estimates and their associated
confidence intervals are determined, then 80 percent of such intervals would bound
the parametric value.

To verify this interpretation four-hundred such estimates and intervals were
calculated from the Kendall Series data at two different degrees of freedom (2 and
1000) and at two different frequencies of the PSD spectra (0.016 and 0.113 Hz).
These frequencies were selected in relation to the amount of bias error associated
with these frequencies. Specifically, as shown in Figure 2-E, 0.016 Hz is
representative of a frequency with very little bias error and 0.113 Hz has the highest
bias error for the Kendall series used.

Figure 5 A-D shows graphically the four-hundred individual confidence intervals
for the estimates in relation to the parametric value u which the estimates approximate.
In these cases p are the values of the theoretical PSD for the Kendall series evaluated
at either 0.016 or 0.113 Hz. From the data presented in Figures 5A to 5D, the
percentage of the 400 trials in which the intervals bounded p is presented in Table 2.

For the low bias associated frequency both degree of freedom cases exhibited

close to 80% of the intervals bounding u. For the high bias associated frequency, the
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2 degree of freedom case resulted in 80.5% of the 400 confidence intervals bounding

i, with only 63.5% for the 1000 degree of fre:dom case.
APPLICATIONS USING ACOUSTIC FLYOVER DATA

To determine the appropriateness of using 2 distribution based confidence
intervals for experimental acoustic flyover data, a similar analysis was done. Forthe
acoustic data the power spectra from amplitude spectra were used and the sample
size was much smaller (30 versus 10000 as ‘or the Kendall Series).

The ensemble averaged (n = 30) power spectrum of the example 500E data
(Figure 6) is shown to be much more complex than the unimodal Kendall Series data
previously examined. Because of the presence of "spikes” in the acoustic power
spectrum, the difference in estimated power distributions relative to frequency was
investigated. The "spike" characteristics obs:rved in the graph can be associated with
the helicopter's main rotor and tail rotor blade: passage frequencies and their
harmonics.

The term tonal will be used to denote these characteristic "spikes” and non-
tonal will be associated with the frequency d:2pendent power measurements which are
not pronouncedly higher or lower than their riearby surrounding estimates.

Results of the frequency dependent Kalmorogov-Smirnov one sample tests are
displayed by symbols in Figure 6 and in Tabl2 3. The statistical tests were performed
to determine if the distribution of the estimated power within the associated
frequencies followed a 2 distribution of two Jegrees of freedom. The first four tones
within the spectrum had significant (& = 0.05) Kilmorogov-Smirnov statistics indicating
the distribution of estimates associated with these frequencies are not from the x2
family of distributions.

The spectral analysis for these data had a Nyquist frequency of 12500 Hertz but

only the estimated frequencies up to 500 Heitz are presented. For this spectrum there
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were 45 (out of 1019) other frequencies which yielded significant (o = 0.05)
Kolmorogov-Smirnov test statistics. These non-x2 distributions were associated with
non-tonal frequencies and were always at least 15 dB lower in power than the low
frequency tones observed. They appeared to be randomly spaced within the non-
tonally associated frequencies of the data.

The cumulative probability distribution functions for selected frequencies
(Figure 7(A-1)) from these data graphically show the distribution differences relative to
the theoretical two degree of freedom x2 distribution. Although the functions for the
non-tonal frequencies (Fig. 7(A,C,D)) do not vary with the theoretical x2 cumulative
probability functions as closely as did the Kendall series distributions, the results from
the Komorogov-Smirnov tests indicate the observed variation is within acceptable
limits for a 2 distributed sample from such a small sample size (30).

The cumulative probability distribution functions for the tonally associated
frequencies (Figure 7(B,E,F,G,H,1)) present a range of covariation relative to the
theoretical ¥2 distribution. Tone power is observed to monotonically decrease as
frequency increases. The first four tones of the spectrum being non-x2 distributed with

the following higher frequency tones following the %2 distribution.
DISCUSSION
Kendall Series

For the Kendall series the two measurement errors associated with the spectral

estimates may be modeled with respect to an individual estimate §x df with an

associated number of degrees of freedom df as

Sxil®) = Bo Sx(@) + eqf (12)
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where Sy(w) is the theoretical PSD, By, is the frequency dependent bias error and edf

represents the random uncertainty error whic is xczjf distributed. The bias error varies
proportionally to the second-derivative of the theoretical PSD and is therefore
frequency dependent. From the results of the analyses of the Kendall series data it is
observed that the PSD estimate distributions follow x2 distributions.

The theoretical PSD is unimodal with ¢ maximum at approximately 0.11 hentz.
The theoretical PSD, not being flat or a ramp function, has a nonzero and changing
second derivative so a spectral estimate by either of the techniques will produce a
biased estimate. When the PSD has a higher frequency dependent second derivative
the bias error will be proportionally higher at :hese frequencies.

For equation 1 confidence intervals to be appropriate it should account for both
bias and uncertainty errors within the estimat2 model. Since only the uncertainty
component is modeled it may be expected that the relationship between the
parametric value (theoretical PSD(w)) and its estimates do not strictly follow equation
1. The confidence interval data from Figure  and Table 2 support this expectation.
When the bias error is low, both sets of 400 tiials at the two different degrees of
freedom resulted in close to 80% of the confidence intervals bounding the parametric
values. For the high bias associated frequency with 2 associated degrees of freedom,
again close to 80% of the 400 trial confidenc:: intervals bounded . The relative width
of the confidence intervals for the 2 degree o' freedom estimates compared to the
systematic bias error in the estimates causes this result. When the confidence
intervals are very wide (low associated df) the percent of the confidence interval trials
bounding p follows equation 1. If this is true :as in the 2 degree of freedom case), the
systematic bias error is small in relation to the range in estimates. For the 1000
associated degrees of freedom case, where {he range of estimates is much smaller,
the bias error is large relative to the range of estimates and consequently much less

than 80% of the confidence intervals bound | .
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For equation 1 to be appropriate it also must account for the bias error in the
estimates for experimental data. Because the bias error for experimental data is not
known (1 not known), the inclusion of this term in the confidence interval equation is
impossible. Equation 1 can therefore be appropriate when there is no bias error. This
is achieved when the data is white noise so that the PSD is flat or linear in .

It has been shown that the technique of prewhitening and postdarkening can be

used to convert a biased estimate into an unbiased estimate.6.9.10 The technique

involves designing a digital filter that will reduce §x(co) to a spectra that is flat or at
least linear as a function of frequency. The transfer function for the digital filter, H(w), is

then related to the original estimated Sy(w) and the new flattened estimate §y(co) by

~

Sy(@) = [H(@)|2 Sx(w) (13)

By reversing the process the unbiased estimate of the parametric spectra may be

obtained by

Sx(w) = : (14)

Hardin® further suggests that the selection of the digital filter is a difficult process and

would probably be best implemented through an iterative approach. It is expected that

such unbiased estimates would still conform to the %2 distribution in order to account

for their uncertainty if the time series data are Gaussian distributed.
Acoustic Data

The compound problems of bias and the omission of bias error in the

confidence interval equation are increased for the experimental acoustic data. The
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numerous tones at various frequencies of the spectrum cause this situation.
Consequently, the complexity of the process "o define a digital filter to flatten the
spectra is much increased.

The distributions of spectral estimates for the acoustic data can be divided into
two groups, the tonally and non-tonally associated estimates. The distribution of
spectral estimates at the non-tonally associated frequencies, which, by our definition,
are roughly flat or at least linear in (w), follow the 12 distribution.

Ninety-five percent of the distributions associated with estimates at these
nontonal frequencies were statistically 2 dis ributed. Because of the linearity of the
second derivative of the power spectra at these frequencies, they may be considered
unbiased, making B, (for equation 12) for these w's very close to 1.0. Consequently,
for a large percentage of the power spectrum of the examined acoustic data, the
application of equation 1 for confidence interals is appropriate.

The distribution of spectral estimates ¢t the tonally associated frequencies of the
acoustic data were shown not to follow the x<' family of distributions for the frequencies
of the spectrum with the most power. Efforts to define a single family of distributions
which modeled the distribution of spectral es imates at these tonal frequencies failed.
The tones, by our definition, include areas of the spectrum where the second
derivative would be relatively high or low, so the amount of bias at these frequencies
would be proportionately high or low. As such, the confidence interval calculations as
in equation 1 would seem inappropriate to account for the variation in these tonally

associated spectral estimates.
Confidence Interval Determinations «t Tonally Associated Frequencies

Appropriate confidence intervals for the tonally associated frequencies may be
determined using other techniques. If the biz s and uncertainty errors of the estimates

are accounted for by the technique, it should perform well. One such technique could
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involve using the prewhitening and postdarkening technique as suggested by Hardin®
to remove the bias error from the estimates. Next, standard descriptive statistical
techniques to quantitatively describe the sample distribution such as skewness and
kurtosis could be computed. If one opted to use Gaussian distribution based
confidence intervals, statistical significance tests for the skewness and kurtosis
statistics could be performed to determine if the data were Gaussian distributed. If the
distribution was not Gaussian, transformations which reshape the distribution could be
performed. Each attempted transformation could be tested to determine if it
successfully produced a normal distribution by again determining the significance of
the skewness and kurtosis statistics relative to their expected values for a Gaussian
distribution. Once a statistically significant Gaussian distribution had been obtained,
an equation for the confidence interval bounding the mean of the transformed data

such as
ProbW-ta[n_”SVSus\_(Ha[n-”sﬂ:p (15)

could be used. Here Y would be the mean of the transformed distribution, a is equal to

1 - p, nis the number of samples in the distribution, t a[n-1] is the a-th percentile critical
value of Student's t-distribution with n-1 degrees of freedom, Sy is the sample
standard deviation and p is the unknown parametric mean. Once the confidence
interval of the transformed data had been determined it should be appropriately
inverse transformed and then converted to the dB scale.

This technique, while being theoretically sound, would demand considerable
computational expense, especially in the determination of the appropriate digital filter

to flatten the observed spectra for the prewhitening phase.
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Gene:al

The analysis of the experimental acou tic data used the individual frequency
dependent spectral estimates to draw conclusions. This approach is not usually used
when determining confidence intervals for an estimate. The average of the estimates
with its appropriate associated degrees of fre2dom as dictated by the additive property
of the %2 distribution is generally used. The conformity of the distributions of spectral
estimates to the theoretical x2 distributions which resulted with the Kendall series data
(Fig. (3A to 3E) and 4A) illustrates the soundr ess of this practice.

The inappropriateness of the ¥2 distrit ution based confidence intervals may
have been predicted based on the assumptions of the analysis techniques. As Otnes
and Enochson? have shown, if the time series data are random Gaussian distributed
variables, the real and imaginary coefficients associated with the DFT are independent
random variables. The periodic nature of heticopter acoustic data associated with the
main rotor and tail rotor blade passage frequ:ncies make these data not random.

Consequently, one of the assumptions of the analysis of the data is not valid.
CONCLUSIONS

Chi-square distribution based confidence intervals may be appropriately
applied to non-tonally associated spectral esiimate distributions as determined by the
PSD or PS spectral methods. This seems lojical since, by definition, the bias error is
near zero at the non-tonal frequencies and ttie estimate distributions are observed to
follow the 2 distribution. Consequently, 2 distribution based confidence intervals
account for the major errors associated with ‘he estimates.

Because of the bias error and non-X2 distribution conformity of spectral estimate
distributions at tonally associated frequencies, the application of 2 distribution based

confidence intervals is inappropriate at these frequencies. An approach to determine
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confidence intervals at the tonally associated frequencies involving (a) prewhitening
and postdarkening to eliminate bias, (b) using descriptive statistical techniques as an
aid in determining the appropriate transform to force the sample distribution to conform

to a normal distribution, and then (c) using Gaussian techniques is suggested.
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TABLIz 1

Kolmorogov-Smirnov one sample test statistizs (D) for Kendall Series data with

varying associated degrees of freedom. Saniple size for all distributions, 10000.

Degrees of Freedom D Exact Significance
Probability
2 0.006458 0.798 NS
4 0.0081510 0.519 NS
10 0.0047907 0.975 NS
20 0.0072172 0.674 NS
100 0.0067225 0.756 NS

Critical D(0_05'105)00) = 0.00886

NS = not sijnificant
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Table 2 - Percentages of Confidence Intervals Bounding the Parametric Values

Degrees of Freedom

Frequency Relative 2 1000
Hz Bias
0.13 Low 785 79.5
0.16 High 80.5 63.5
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TABLE 3 - Kolmorogov-Smirnov one-sample test statistics (D) for 500E power spectra

data at different frequencies. Sample size fo- all distributions, 30.

Frequency D Exact Significance
(Hz) Probability
12.2 0.1498 0.510 NS
24 .4 0.1115 0.849 NS
36.6 0.4267 0.000 S
48.8 0.1629 0.403 NS
61.0 0.1071 0.881 NS
73.2 0.4046 0.000 S
85.4 0.1507 0.502 NS
97.7 0.0850 0.981 NS
109.9 0.2796 0.018 S
1221 0.1437 0.564 NS
134.3 0.2734 0.022 S
146.5 0.2836 0.016 S
158.7 0.0930 0.957 NS
170.9 0.1459 0.545 NS
183.1 0.1626 0.405 NS
195.3 0.0955 0.947 NS
207.5 0.1179 0.798 NS
219.7 0.2242 0.097 NS
231.9 0.0959 0.945 NS
2441 0.1344 0.649 NS
256.3 0.1508 0.501 NS

268.6 0.1112 0.851 NS
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Table 3 - Continued

Frequency D Exact Significance
(Hz) Probability
280.8 0.1312 0.679 NS
293.0 0.1705 0.347 NS
305.2 0.0886 0.972 NS
317.4 0.1567 0.452 NS
329.6 0.1423 0.577 NS
341.8 0.1030 0.907 NS
354.0 0.1239 0.746 NS
366.2 0.0907 0.965 NS
378.4 0.1348 0.646 NS
390.6 0.0894 0.969 NS
402.8 0.1059 0.889 NS
415.0 0.1251 0.735 NS
427.2 0.1049 0.895 NS
439.5 0.2019 0.173 NS
451.7 0.2359 0.070 NS
463.9 0.1215 0.767 NS
476.1 0.1568 0.451 NS
488.3 0.1441 0.560 NS

Critical D(g.05,30) = 0.24170

NS = not significant

S = significant



Figure 1-A Frequency domain presentation of example 500E
data showing distributions of interest.
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Figure 1-B
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Frequency domain presentation of example 500E
data showing distributions of interest.
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Figure 1-C Frequency domain presentation of example 500E
data showing distributions of interest.
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Figure 1-D Frequency domain presentation of example 500E
data showing distributions of interest.
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Figure 1-E Frequency domain presentation of example 500E
data showing distributions of interest.
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4 Pl X PSD(F)

Figure 2-A Theoretical and simulated Kendall series power spectral density.
2 degrees of freedom estimate for simulated data.
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1Pl X PSD(F)

Figure 2-B Theoretical and simulated Kendall series power spectral density.
10 degrees of freedom estimate for simulated data.
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4 Pl X PSD(F)

Figure 2-C Theoretical and simulated Kendall series power spectral density.
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4 Pl X PSD(F)

Figure 2-D Theoretical and simulated Kendall series power spectral density.
1000 degrees of freedom estimate for simulated data.
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4 Pl X PSD(F)

Figure 2-E Theoretical and simulated Kendall series power spectral density.
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NUMBER DF OCCURRENCES

FIGURE 3-A DISTRIBUTION OF KENDALL SERIES POWER SPECTRAL DENSITY
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NUMBER OF OCCURRENCES

Figure 3-B DISTRIBUTION OF KENDALL SERIES POWER SPECTRAL DENSITY
10000 REALIZATIONS WITH 4 DEGREES OF FREEDOM EACH
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NUMBER OF OCCURRENCES

FIGURE 3-C DISTRIBUTION OF KENDALL SERIES POWER SPECTRAL DENSITY
10000 REALIZATIONS WITH 10 DEGREES OF FREEDOM EACH
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NUMBER OF OCCURRENCES

FIGURE 3-D DISTRIBUTION OF KENDALL SERIES POWER SPECTRAL DENSITY
10000 REALIZATIONS WITH 100 DEGREES OF FREEDOM EACH
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NUMBEF OF OCCURRENCES

FIGURE 3-E DISTRIBUTION OF KENDALL SERIES POWER SPECTRAL DENSITY
10000 REALIZATIONS WITH 1000 DEGREES OF FREEDOM EACH
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Figure 4A. Histograms of PSD Spectral Estimates of Kendall
Series Data at Fixed Frequency (0.113 Hz)
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Figure 4-B Cumulative probability density functions for theoretical chi-square
distribution with 2 degrees of freedom and a distribution of 10000 spectral
estimates from the Kendall series data evaluated at 0.113 Hz.
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Figure 4-C Cumulative probability density functions for theoretical chi-square
distribution with 4 degrees of freedom and a distribution of 10000 spectral
estimates from the Kendall series data evaluated at 0.113 Hz. -
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Figure 4-D Cumulative probability density functions for theoretical chi-square
distribution with 10 degrees of freedom and a distribution of 10000 spectral
estimates from the Kendall series data evaluated at 0.113 Hz.
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Figure 4-E Cumulative probability density functions for theoretical chi-square
distribution with 20 degrees of freedom and a distribution of 10000 spectral
estimates from the Kendall series data evaluated at 0.113 Hz.
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Figure 4-F Cumulative probability density functions for theoretical chi-square
distribution with 100 degrees of freedom and a distribution of 10000 spectral
estimates from the Kendall series data evaluated at 0.113 Hz.
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Figure 6 Power Spectrum of NASA/MDHC 500E Acoustic Data

AZJIMUTHAL DIRECTIVITY ANGLE © 9
POLAR DIRECTIVITY ANGLE 75 9
ANALYSIS BW 12 2 HZ

ENSEMBLE AVERAGED SPECTRUM N=38

= -4
- ‘ [ PAssociated Distribution = Chi Square

L ‘ M Associated Distribution = Non Ch: Square

SPL (dB>

JJJIILIIIIIIllllllllllLllllllllllllllIllllllllLll

0 100 200 300 400 500

Frequency (Hz>

[A°]



Figure 7-A Cumulative probability distribution functions for theoretical
Chi—square distribution with 2 degrees of freedom and a
distribution of 30 spectral estimates from 500E

data evaluated at 24.4 Hertz.
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Figure 7-B Cumulative probability distribution functions for theoretical
Chi-square distribution with 2 degrees of freedom and a
distribution of 30 spectral estimates from 500E
data evaluated at 36.6 Hertz.
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Figure 7-C Cumulative prebability distribution functions for theoretical
Chi-square distribution with 2 degrees of freedom and a
distribution of 30 spectral estimates from 500E
data evaluated at 48.8 Hertz.
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Figure 7-D Cumulative probability distribution functions for theoretical
Chi-square distribution with 2 degrees of freedom and a
distribution of 30 spectral estimates from 500E
data evaluated at 61.0 Hertz.
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Figure 7-E  Cumulative probabilitv distribution functions for theoretical
Chi—-square distribution with 2 degrees of freedom and a
distribution of 30 spectral estimates from 300E
data evaluated at 73.2 Hertz.
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Figure 7-F  Cumulative probability distribution functions for theoretical
Chi-square distribution with 2 degrees of freedom and a
distribution of 30 spectral estimates from 500E

data evaluated at 109.9 Hertz.
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Figure 7-G Cumulative probability distribution functions for theoretical
Chi-square distribution with 2 degrees of freedom and a
distribution of 30 spectral estimates from 500E
data evaluated at 146.5 Hertz.
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Figure 7-H  Cumulative probability distribution functions for theoretical
Chi—square distribution with 2 degrees of freedom and a
distribution of 30 spectral estimates from 500E
data evaluated at 183.1 Hertz.
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Figure 7-I Cumulative probability distribution functions for theoretical
Chi-square distribution with Z degrees of freedom and a
distribution of 30 spectral estimates from 3500E
data evaluated at 2197 Hertz.
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